当前位置:首页 » 法规百科 » 三年级乘法规律练习题

三年级乘法规律练习题

发布时间: 2022-04-18 21:24:59

1. 三年级数学乘除法口算题

三年级数学乘除法口算题

(1)133x9= (2)90÷5= (3)196 x3= (4)130÷2=
(5)144x4= (6)243 ÷3= (7)131x5= (8)196÷7=
(9)222x7= (10)707÷7= (11)205x6= (12)222÷6=
(13)693x8= (14)185÷5= (15)361x7= (16)984÷4=
(17)530x4= (18)873÷9= (19)987x6= (20)666÷6=

强调:口算题既要保证一定的量,更要保证适合三年级多位数与一位数的乘除法类型训练。

2. 这道题怎么做,谢谢,三年级,乘法除法题

您好,同学,这个是除法题。思考思路是这样的,总共360人,分成4个方阵,每个方阵是360/4=90人。每个方阵站成5行,每行站的人数为90/5=18人。不知道能否帮到您呢,谢谢!

3. 小学三年级一道数学题.先计算,再来比一比,找规律.急......

26+3=29 26+43=(26+3)+40=29+40=69 26+63=(26+3)+60=29+60=89。

5+38=43 25+38=20+(5+38)=20+43=63 55+38=50+(5+38)=50+43=93。

42+8=50 42+18=(42+8)+10=50+10=60 42+48=(42+8)+40=50+40=90。

19+7=26 19+37=(19+7)+30=26+30=56 19+77=(19+7)+70=26+70=96。

(1)乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。

(2)加法原理:如果因变量f与自变量(z1,z2,z3…,zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。

4. 760道计算题三年级乘法简单

1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35

5. 小学三年级数学乘除法15道

综述:具体如下:

65÷5= 906÷3= 870÷4= 716÷5=

80÷6= 783÷3= 804÷2= 148÷8=

246÷7= 750÷5= 103÷3= 123÷3=

144÷9= 97÷3= 352÷5= 296÷4=

860÷2= 220÷9= 153÷5= 357÷6=

乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。

6. 三年级上口算多位数乘法题目

三、两位数乘法口算
一位数乘法口算就是口诀表,在讲清算理的基础上要求背会。这里重点介绍几种两位数乘法的特殊算法。
1、两个相同因数积的口算法;(平方口算法)
(1)、基本数与差数之和口算法:
基本数:这个数各位分别平方后,组成一个新的数称基本数。十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位。
差数:这个数十位和个位的积再乘20称差数。
基本数 + 差数 = 这两个相同因数的积。
例1、13×13
基本数:百位:1×1=1
十位:用0占位
个位:3×3=9
所以基本数就是 109
差数:1×3×20=60
基本数 + 差数 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本数:百位以上数字是 6×6=36
十位和个位数字是7×7=49
所以基本数是 3649
差数:6×7×20=840
基本数+差数=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思维过程:
第一步:把这个数个位平方。得出的数,个位作为积的个位,十位保留。
第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留。
第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数。
例1、24×24
第一步:4×4=16 “1”保留,“6”就是积的个位数。
第二步:4×2×2+1=17 “1”保留,“7”就是积的十位数。
第三步 :2×2+1=5 “ 5”就是积的百位数.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是积的个位数。
第二步:3×7×2+4=46 "4"保留,"6",就是积的十位数。
第三步 :3×3+4=13 "13"就是积的百位和千位数字。
所以:37×37=1369
(3)、接近50两个相同因数积的口算
思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位)。
例1、53×53
5×5+3=28 再添上3×3=9 (必须两位09) 等于2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等于3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十补数)=22 再添上3×3=9 (必须两位09)
等于2209
所以:47×47=2209
(4)、末位是5的两个相同因数积的口算
思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
两个相同因数积的口算方法很多,这里就不一一介绍了。我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积。举例如下:
例1、13×14
因为:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因为:14×14=196 再减14 还 得182
例2、35×37
因为:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有规律的数的口算
(1)首同尾合十(首同尾补)
思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位。
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首补)
思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位。
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一个数两位数字相同,一个数两位数字互补)
思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积。如积是一位数,十位用零占位。
例:33×64=(3×6+3)×100+3×4=2112
以上三种方法,可以用一个公式计算即:
(头×头+同)×100 + 尾×尾
3、利用特殊数字相乘口算
有些数字很特殊,它们的积是有规律的。
(1)7乘3的倍数或3乘7的倍数
先看看下面的几个式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126......7×27=189
我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍.
因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍.
果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍数或3乘17的倍数
17乘3的倍数,等于该倍数加该倍数的50倍.(3乘17的倍数也适用)
如果我们设这个倍数为N,用公式表示:17×3N=N+50N(N>0的正整数)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍数或13乘17的倍数
17乘13的倍数等于该倍数加该倍数的20倍,再加200倍。
如果我们设这个倍数为N,用公式表示:17×13N=N+20N+200N(N>0的正整数)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍数或7乘43的倍数
43乘7的倍数等于该倍数加该倍数的300倍。
如果我们设这个倍数为N,用公式表示:43×7N=N+300N(N>0的正整数)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、两个接近100的数相乘的口算
(1)超过100的两个数相乘
思维方法:先把一个因数加上另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积。
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的两个数相乘
思维方法:先从一个因数中减去另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积。
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一个超过100,一个不足100的两个数相乘
思维方法:超过100的数减不足100的差,扩大100倍后,减去两个因数分别与100之差的积。
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了。以上仅介绍了部分特殊口算技巧,还有利用运算定律和运算性质可以口算;利用凑整法可以口算等等。要求我们教师要熟记和掌握这些方法,关键只有一种:最终近快的准确的口算出结果。

7. 三年级乘法计算题100道

三年级的计算题没有100道有10000题乘法题

8. 小学三年级下册数学竖式计算题乘法有答案

竖式乘法例子解析83×31
解题思路:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:1×83=83

步骤二:3×83=2490

根据以上计算结果相加为2573

验算:2573÷31=83

(8)三年级乘法规律练习题扩展阅读$验算结果:将被除数从高位起的每一位数进行除数运算,每次计算得到的商保留,余数加下一位数进行运算,依此顺序将被除数所以位数运算完毕,得到的商按顺序组合,余数为最后一次运算结果
解题过程:
步骤一:257÷31=8 余数为:9

步骤二:93÷31=3 余数为:0

根据以上计算步骤组合结果为83

存疑请追问,满意请采纳

9. 小学三年级乘法规律

乘法交换律是两个数相乘,交换因数的位置,它们的积不变。主要公式为a×b×c=a×(b×c), ,它可以改变乘法运算当中的运算顺序 .在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用.

10. 小学三年级数学找规律的题……

第一题:16乘以7等于下面的112
,38乘以7等于下面的266,102乘以7等于下面的714,所以42下面的应该是42乘以7=294,58下面的应该是58乘以7=406.
第二题:107乘以3等于下面的321,以此类推,808下面的应该是808乘以3=2424,706下面的应该是706乘以3=4218

热点内容
法考过了cpa免考经济法吗 发布:2025-02-13 14:19:22 浏览:662
临海法律服务所 发布:2025-02-13 13:42:37 浏览:211
合同法江平 发布:2025-02-13 13:31:01 浏览:241
电信服务不适用合同法 发布:2025-02-13 13:23:11 浏览:336
法律顾问让调解更高效 发布:2025-02-13 13:12:53 浏览:651
人民法院最高审 发布:2025-02-13 12:58:04 浏览:491
沈阳市供暖条例 发布:2025-02-13 12:55:11 浏览:816
民法典河边 发布:2025-02-13 12:26:49 浏览:46
公司不发底薪符合劳动法吗 发布:2025-02-13 12:22:41 浏览:594
济南市铁路法院 发布:2025-02-13 11:17:20 浏览:530