矩阵乘法规则
1. 分块矩阵的乘法规则是什么简单地说呢
分块矩阵来的乘法规则如题所示:自
对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。
分块矩阵是一个矩阵, 它是把矩阵分别按照横竖分割成一些小的子矩阵。 然后把每个小矩阵看成一个元素。
(1)矩阵乘法规则扩展阅读:
同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。
分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。
2. 两个二阶矩阵相乘怎么算法则
a1 b1 a2 b2
设矩阵A = B=c1 d1 c2 d2
a1a2+b1c2 a1b2+b1d2
则矩阵AB=c1a2+d1c2 c1b2+d1d2
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩回阵的列数(答column)和第二个矩阵的行数(row)相同时才有意义 。
一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。
(2)矩阵乘法规则扩展阅读:
基本性质
乘法结合律: (AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB).
转置 (AB)T=BTAT.
矩阵乘法一般不满足交换律。
3. 矩阵乘法的规则是什么
矩阵乘法,用第1个矩阵的行向量,与第2个矩阵的列向量,求内积(对应元素分别相乘后,相加)
得到新矩阵相应位置的元素。
4. 请问矩阵加减乘除如何计算
加法运算:两个矩阵的加是矩阵中对应的元素相加,相加的前提是:两个矩阵要是通行矩阵,即具有相同的行和列数。如:矩阵A=[1 2],B=[2 3] ,A+B=[1+2 2+3]=[3 5]。
减法运算:两个矩阵相减,跟加法类似。
乘法运算:两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,才可以进行乘法,矩阵乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值。
除法运算:一般不说矩阵的除法。都是讲的矩阵求逆。
(4)矩阵乘法规则扩展阅读:
矩阵乘法的注意事项
1、当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
基本性质
乘法结合律: (AB)C=A(BC)。
乘法左分配律:(A+B)C=AC+BC 。
乘法右分配律:C(A+B)=CA+CB 。
对数乘的结合性k(AB)=(kA)B=A(kB)。
转置 (AB)T=BTAT.
矩阵乘法一般不满足交换律。
*注:可交换的矩阵是方阵。
计算矩阵的除法,先将被除的矩阵先转化为它的逆矩阵,再将前面的矩阵和后面的矩阵的逆矩阵相乘。
那么,一个矩阵的逆矩阵的求解方法是:先把一个单位矩阵放在目的矩阵的右边,然后把左边的矩阵通过初等行变换转换为单位矩阵,此时右边的矩阵就是我们要求的逆矩阵。
我们再通过举一个实例来说明矩阵的除法的具体计算方法。
先把单位矩阵放在矩阵A的右边并放在同一个矩阵里边。现用第二行和第三行分别减去第一行的3倍和-1倍。
5. 请问矩阵的运算法则
矩阵的运算 1、矩阵的加法 : 如果 是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和 仍为与它们同型的矩阵(即 ), 的元素为 和 对应元素的和,即: 。 给定矩阵 ,我们定义其负矩阵 为: 。这样我们可以定义同型矩阵 的减法为: 。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列 运算律: ( 1)交换律: ; ( 2)结合律: ; ( 3)存在零元: ; ( 4)存在负元: 。 2 、数与矩阵的乘法 : 设 为一个数, ,则定义 与 的乘积 仍为 中的一个矩阵, 中的元素就是用数 乘 中对应的元素的道德,即 。由定义可知: 。容易验证数与矩阵的乘法满足下列运算律: (1 ) ; (2 ) ; (3 ) ; (4 ) 。 3 、矩阵的乘法:设 为 距阵, 为 距阵,则矩阵 可以左乘矩阵 (注意:距阵 德列数等与矩阵 的行数),所得的积为一个 距阵 ,即 ,其中 ,并且 。 据真的乘法满足下列 运算律(假定下面的运算均有意义): ( 1)结合律: ; ( 2)左分配律: ; ( 3)右分配律: ; ( 4)数与矩阵乘法的结合律: ; ( 5)单位元的存在性: 。 若 为 阶方阵,则对任意正整数 ,我们定义: ,并规定: 由于矩阵乘法满足结合律,我们有: , 。
6. Matlab 矩阵乘法以及矩阵点乘的规则区别
矩阵乘法的要求是参与相乘的左矩阵的列数必须跟右矩阵的行数相同,即A (M x N) 乘以 B (N x K) 的乘积矩阵C 为 M x K 维的。
矩阵乘法结果矩阵的每个元素都是向量的内积,cij = ,即A的第i行向量和B的第j列向量的内积。
矩阵点乘则要求参与运算的矩阵必须是相同维数的,是每个对应元素的逐个相乘。
例子如下:
A = [1 3;2 4]
A =
1 3
2 4
B = [3 0;1 5]
B =
3 0
1 5
A*B
ans =
6 15
10 20
A.*B
ans =
3 0
2 20
(6)矩阵乘法规则扩展阅读
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多。
并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。
优势特点
1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;
2) 具有完备的图形处理功能,实现计算结果和编程的可视化;
3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;
4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
7. 矩阵与矩阵乘法规则
方阵属于矩阵,是行数与列数相等的特殊矩阵
矩阵乘法规则:左边矩阵决定行数,右边矩阵决定列数,而且左边矩阵列数等于右边矩阵行数
8. 2x2矩阵,3x3矩阵的计算方法
左边矩阵第一行的元素分别与右边矩阵第一列的元素相乘,求和得到相乘内矩阵的第一行的容第一个元素。左边矩阵第一行的元素分别与右边矩阵第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素。以此类推。
具体方法如下图:
矩阵的乘法满足以下运算律:
结合律:A(BC)=(AB)C
左分配律: (A+B)C=AC+BC
右分配律:C(A+B)=CA+CB
矩阵乘法不满足交换律
参考资料:
网络-矩阵
9. 方阵与矩阵有什么区别矩阵的乘法规则是什么
你好!不管是大矩阵或是小块矩阵都不必是方阵,只要分块方法使得对应的小块都能相乘就可以。经济数学团队帮你解答,请及时采纳。谢谢!
10. 两个二阶矩阵相乘怎么算法则
解:
a1
b1
a2
b2
设矩阵A
=
B=
c1
d1
c2
d2
a1a2+b1c2
a1b2+b1d2
则矩阵AB=
c1a2+d1c2
c1b2+d1d2
希望可以帮到你
祝学习快乐!
O(∩_∩)O~