智能算法学习笔记
『壹』 智能算法的智能算法概述
智能优化算法要解决的一般是最优化问题。最优化问题可以分为(1)求解一个函数中,使得函数值最小的自变量取值的函数优化问题和(2)在一个解空间里面,寻找最优解,使目标函数值最小的组合优化问题。典型的组合优化问题有:旅行商问题(Traveling Salesman Problem,TSP),加工调度问题(Scheling Problem),0-1背包问题(Knapsack Problem),以及装箱问题(Bin Packing Problem)等。
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,本文介绍的模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
一般而言,局部搜索就是基于贪婪思想利用邻域函数进行搜索,若找到一个比现有值更优的解就弃前者而取后者。但是,它一般只可以得到“局部极小解”,就是说,可能这只兔子登“登泰山而小天下”,但是却没有找到珠穆朗玛峰。而模拟退火,遗传算法,禁忌搜索,神经网络等从不同的角度和策略实现了改进,取得较好的“全局最小解”。
『贰』 智能优化算法学习的问题
你搜搜雷秀娟的群智能算法书吧,她上面关于PSO的改进都可以借鉴到其他方法中。我觉得是挺有价值的~
『叁』 机器学习该怎么入门
当初学者开始学习机器时,科多大数据相信大家首先会问“门槛是什么?需要了解什么才能开始从事这一行?
一旦初学者开始尝试了解这个问题,经常发现善意但令人沮丧的建议,如下所示:
你需要掌握数学,以下是清单:
- 微积分
- 微分方程
- 数学统计
- 优化
- 算法分析
...
像这样的回复足以令任何人都感到恐惧,即使具有一定的数学专业基础。
猜想很多初学者会被这样的建议吓倒,其实所需要的数学知识比你想象的少(至少比你被告知的要少)。如果有兴趣成为机器学习从业者,那么你不需要很多高级数学知识也可以开始。
但要说没有任何门槛那也不是。事实上,即使没有对微积分和线性代数的高度理解,也有其他门槛。
数学不是机器学习的主要前提
如果是初学者,而目标是在行业或企业中处理问题,那么数学不是机器学习的主要先决条件。
到目前为止,你听到的关于机器学习的大多数建议是来自在学术领域里从事数据科学的专家。
在学术领域,你经常会被鼓励学术研究和写报告,当你的研究领域是机器学习,那么你的确需要深入了解机器学习的统计学和数学基础。
在工业领域,在大多数情况下,主要的追求不是发明创造(造轮子)和写报告。企业真正追求的是否能创造商业价值。在大多数时候,尤其刚起步阶段,你会应用“现成”工具就足够了。这时候你会发现,这些工具对数学的要求并没有你想象的那么高。
“现成的”工具数学要求并不高
几乎所有常见的机器学习库和工具都会为你处理困难的数学问题,也就是说不一定需要知道线性代数和微积分才能从事机器学习工作。
再次强调这一点:现代统计学和机器学习软件可以为你处理大量的数学问题。
对于初学者来说,机器学习涉及的数学知识深似海,了解深海领域的数学知识既不需要也没必要。
当然这些工具不能替你把所有的事都干了。你仍然需要动手实践才能掌握这些工具。
如果要开始学习机器,需要学习的真正的必备技能就是数据分析。
对于初学者(不管你是软件工程师还是来自其他领域的从业者),你不需要知道很多微积分、线性代数或其它任何大学级数学知识就可以完成这些任务。
但数据分析能力却是必不可少的,数据分析是你完成工作所需的第一个技能,这才是机器学习初学者真正需要必备的能力。
数学是重要的,但不是对入门者的
数学很重要,特别是在某些情况下,数学是非常重要的。
首先,如果你是在学术领域中进行机器学习研究,数学很重要;第二,在行业领域中,数学对于一小部分高级数据分析师/数据科学家也是重要的。特别是像Google和Facebook这样的公司,他们走在前沿,正在使用机器学习领域的尖端工具,这些人会在他们的工作中经常使用微积分、线性代数和更高级的数学。
初学者学习机器学习也是需要数学的,要开始学习机器学习,入门级你至少需要本科基础数学技能。你还需要了解基本统计知识,如:平均值,标准偏差,差异等等。
『肆』 智能算法的智能算法研究
这些算法都有什么含义?首先给出个局部搜索,模拟退火,遗传算法,禁忌搜索的形象比喻:
为了找出地球上最高的山,一群有志气的兔子们开始想办法。
1.兔子朝着比现在高的地方跳去。他们找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是局部搜索,它不能保证局部最优值就是全局最优值。
2.兔子喝醉了。他随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,他渐渐清醒了并朝最高方向跳去。这就是模拟退火。
3.兔子们吃了失忆药片,并被发射到太空,然后随机落到了地球上的某些地方。他们不知道自己的使命是什么。但是,如果你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会找到珠穆朗玛峰。这就是遗传算法。
4.兔子们知道一个兔的力量是渺小的。他们互相转告着,哪里的山已经找过,并且找过的每一座山他们都留下一只兔子做记号。他们制定了下一步去哪里寻找的策略。这就是禁忌搜索。
『伍』 智能算法
智能信息处理研究方向
一、 科研方向意义
智能信息处理是人工智能(AI)的一个重要研究领域。在世界各地对人工智能的研究很早就开始了,当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,而人工智能也始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。随着理论研究的不断深入和应用领域的迅速扩大,近年来智能信息处理成了人工智能的一个热门研究方向,我国各高等院校都成立了关于智能信息处理的研究机构。他们立足于信息处理技术的基础研究和应用,积极地将数学、人工智能、逻辑学、认知科学等领域最新研究成果应用于各种信息的智能处理,在模式识别与人工智能、数据库与数据仓库的挖掘技术、信息网络安全与数据保密技术等方面取得了较好的研究成果,在带动其院校学科建设的同时,也努力扩大了信息技术在国民经济各领域的应用,提高了信息处理技术的社会效应和经济效益。
二、主要研究方向
模式识别与人工智能
数据挖掘算法
优化决策支持系统
商用智能软件
三、研究目标
以促进本学科的建设为目标,加强智能理论的研究,并侧重智能系统的开发应用工作。在理论上,配合本硕学生的教学工作,在模式识别与人工智能、数据挖掘和智能算法等方面进行深入研究,取得比较深入的理论研究成果,从而使学生掌握这方面最新的知识理论,为他们在以后的研究和工作中打下坚实的基础,进一步可以独立研究并取得更大的成就。在智能应用上,我们要根据现有的基础条件,进一步加强梯队人员和素质的建设,形成一支结构合理、充满活力、人员稳定的研究队伍;建立并扩展与外界的合作关系,将最新的理论研究成果转化为生产力,开发出企业急需的、先进的智能控制和信息处理软件系统,从而在为社会做贡献的同时提高我校的声誉,有利于我校的招生和就业。本方向的研究工作还会促进学生实验实践环节的质量,从根本上提高毕业生的素质。
『陆』 哪位大神有《matlab智能算法超级学习手册》这本书的pdf文件
http://hi..com/zhjstef/blog/item/a35c1a4b16d6ad2409f7ef9e.html
里面的第一个就是清晰版pdf