计算方法学
『壹』 1.计算教学中,如何处理算理与计算方法的关系
计算的算理是指计算的理论依据,通俗地讲就是计算的道理。算理一般由数学概念、定律、性质等构成,用来说明计算过程的合理性和科学性。计算的算法是计算的基本程序或方法,是算理指导下的一些人为规定,用来说明计算过程中的规则和逻辑顺序。
算理和算法既有联系,又有区别。算理是客观存在的规律,主要回答“为什么这样算”的问题;算法是人为规定的操作方法,主要解决“怎样计算”的问题。算理是计算的依据,是算法的基础,而算法则是依据算理提炼出来的计算方法和规则,它是算理的具体体现。算理为计算提供了正确的思维方式,保证了计算的合理性和可行性;算法为计算提供了便捷的操作程序和方法,保证了计算的正确性和快速性。算理和算法是计算教学中相辅相成、缺一不可的两个方面。
处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。当前,计算教学中“走极端”的现象实质上是没有正确处理好算理与算法之间关系的结果。一些教师受传统教学思想、教学方法的支配,计算教学只注重计算结果和计算速度,一味强化算法演练,忽视算理的推导,教学方式“以练代想”,学生“知其然,不知其所以然”,导致教学偏向“重算法、轻算理”的极端。与此相反,一些教师片面理解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。
如何正确处理算理与算法的关系,防止“走极端”的现象,广大数学教师在教学实践中进行了有益的探索,取得了许多成功经验。比如,“计算教学要寻求算理与算法的平衡,使计算教学‘既重算理,又重算法”“把算理与算法有机融合,避免算理与算法的‘硬性对接’”“引导学生在理解算理的基础上自主地生成算法,在算法形成与巩固的过程中进一步明晰算理”“计算教学要让学生探究并领悟算理,及时抽象并掌握算法,力求形成技能并学会运用”等等,这些观点对于计算教学少走弯路、提高计算教学质量具有重要作用。
对此,笔者认为,处理计算教学中算理与算法的关系还应注意以下五点:一是算理与算法是计算教学中有机统一的整体,形式上可分,实质上不可分,重算法必须重算理,重算理也要重算法;二是计算教学的问题情境既为引出新知服务,体现“学以致用”,也为理解算理、提炼算法服务,教学要注意在“学用结合”的基础上,以理解算理,掌握算法,形成技能为主;三是算理教学需借助直观,引导学生经历自主探索、充分感悟的过程,但要把握好算法提炼的时机和教学的“度”,为算法形成与巩固提供必要的练习保证;四是算法形成不能依赖形式上的模仿,而要依靠算理的透彻理解,只有在真正理解算理的基础上掌握算法、形成计算技能,才能算是找到了算理与算法的平衡点;五是要防止算理与算法之间出现断痕或硬性对接,要充分利用例题或“试一试”中的“可以怎样算?”“在小组里说一说,计算时要注意什么?”等问题,指导学生提炼算法,为算理与算法的有效衔接服务。
『贰』 (一)计算方法
1.Tennant法
估计河流生态用水的常用方法是Tennant法,又称Montana法,这是一种水文学方法。该法在考虑保护鱼类、野生动物和有关环境资源的河流流量状况下,按照年平均流量的百分数推荐河流基流。Tennant方法主要用来评价河流水资源开发利用程度或作为在优先度不高的河段研究河道流量推荐值使用,或作为其他方法的一种检验。
Tennant法根据流量级别及其对生态的有利程度,将河道内生态环境需水量确定为不同的级别,从“极差”到“最大”共8个级别,并对不同级别推荐了河流生态用水流量占多年平均流量的百分比。
Tennant方法的计算过程相对简单,即只要根据多年平均流量,利用相应级别的百分比即可确定出年内不同时段的生态环境需水量,对全年求和即可求得全年的生态环境需水量。
2.Q90法
Q90法源于美国的7Q10法,7Q10法为美国考虑水质因素确定河道内生态环境需水的方法,即采用90%保证率最枯连续7 d的平均流量作为河流最小流量设计值。美国环保署(EPA)通过研究表明基于水文学的7Q10法和基于生物学的4B3法的计算结果十分接近,因而建议以此作为污染物排放对水生物长期影响效果的水质标准设计流量。此后,美国联邦政府和许多州通过立法将7Q10法作为确定河道内基流的计算方法。7Q10法在20世纪70年代传入我国并在许多大型水利工程建设的环境影响评价中得到应用。由于该标准要求比较高,鉴于我国的经济发展水平比较落后、南北方水资源情况差别较大的现状,对该法进行了修改,一般采用近10年最枯月平均流量或90%保证率最枯月平均流量。
Q90法也是一种水文学计算方法,即将90%保证率的最小月平均流量作为河道内生态环境需水流量值。其计算过程为,首先由各河段水文历史资料,在各年中找出其月平均流量最小月份的流量值,然后利用这些最小月平均流量进行频率计算,其90%保证率的流量值即可作为河道内生态环境需水流量,由此流量值即可求得全年的生态环境需水量。
3.湿周法
湿周法则是一种水力学计算方法,其主要依据是水力学研究中得到的基本认识。通常湿周随着河流流量的增大而增加,然而当湿周超过某临界值后,即使河流流量的巨幅增加也只能导致湿周的微小变化。注意到湿周临界值的这一特殊意义,我们只要保护好作为水生物栖息地的临界湿周区域,也就基本上满足了临界区域水生物栖息保护的最低需求。将河流临界湿周作为水生物栖息地质量指标估算相应河流生态需水量时,所得的流量会受到河道形状的影响。这种方法一般适用于宽浅河道。
湿周法计算的关键是要确定出流量—湿周关系,这可以先根据河道断面资料确定出水位—湿周关系,并结合水文学中的水位—流量关系即可确定出流量—湿周关系。由流量—湿周关系图,在其中找出变化曲折的临界点,将此临界点的流量值作为保持河道内生态需水的流量值,由此流量值即可求得全年的生态环境需水量。
『叁』 如何进行计算方法的教学
如何进行计算方法的教学
传统的小学计算教学常常通过机械重复、大题目量的训练,只重视计算的结果,不重视计算法则的形成过程和计算方法的概括。而在课改初期,教师们认识到了原有教学模式的局限,大张旗鼓地开展自主学习,发挥学生的学习主动性。在计算教学中过分强调计算方法的多样化,教师没有起到很好的主导作用,课堂上遍地都是“你是怎么想的”“还有其他不同的算法吗”“你喜欢怎么算就怎么算”。40分钟的课堂教学经常都是你说我说,而减少了很多必要的练习,导致学生计算的能力不如以前娴熟。那么,计算教学应该如何扎实而不失灵活,我们一线教师又应该如何在传统教学只重计算结果和只重计算方法这两个极端中寻求两者之间的平衡点呢?我曾经有过困惑,尝试了计算教学的改革,以下谈谈我怎样进行计算教学的。
一、计算教学与情境创设。
数学情境创设是指把生活中的实际问题提出来,让学生产生认知冲突,进行探索,将实际问题逐步抽象成数学问题。
我认为在计算教学中创设一定的情境还是需要的,新课程标准明确指出:让学生学习生活中的数学,感受数学与生活的密切联系,并且能用数学知识解决生活中的实际问题。但创设的情境一定要符合学生的年龄特征、贴近学生生活。我们要通过创设与学生生活紧密相关的生活情境,使学生感受到数学与现实世界的紧密联系,激起对数学的兴趣。主题图要紧扣学生情况与教学实际进行适当处理。主题图的选择必须符合学生学习的实际情况,教师在教学设计时要仔细斟酌教材中的主题图。当教材中的主题图不吻合学生生活实际时,教师要灵活进行处理,如在执教的《两位数加两位数的口算》整堂课中,我都以学生的实际材料作为数学学习的情景,通过秋游前的准备,乘车到旅游区游玩等一系列环节,把整堂课自然的串成一个生活情境,营造良好的学习氛围。从学生们在课堂上兴趣盎然、积极投入的表现看出,他们是这么喜欢这样的课堂。德国教育家第斯多惠指出:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。创设教学情景也是激励、唤醒、鼓舞的一种艺术。而近代心理学研究也表明:学生课堂思维是否活跃,主要取决于他们是否具有解决问题的需要。所以,课堂上,教师应调动起学生的求知欲望。此时,创设问题情景犹如一块石头投入学生的脑海,必会激起思维的浪花。可见,创设问题情景是教学中的一种重要手段。
二、正确区分情景在计算教学与解决问题中的不同作用。传统的计算教学往往把计算与解决问题分割开来,纯粹为了计算而教,使计算教学与现实生活明显脱节。而课改初期,教师们往往设计了内容丰富的情景吸引学生学习,在教学过程中又没有较好地把握情景与教学之间的合理关系,导致计算课与解决问题的课分不清楚。那么,计算课要不要情景,怎样用情景,我们也需要理性思考。我认为,计算教学需要情景,更要合理使用情景。如:二年级下册两位数加二位数的口算,有这样一个情景。(1)二(1)班和二(2)班能合乘一条船吗?(2)二(3)班和二(4)班能吗?这块计算内容,从乘船这个现实生活中提取学习材料,借助生活情景激发学生的探究热情。在设计情景时,意在让学生通过一条船能坐68人和四个班各个班的人数这些相关的数学信息引出学习的计算内容。提出问题后重点解决31+23和32+39是怎么计算的,如前者先算1+3=4,再算30+20=50,最后算50+4=54,后者先算32+30=62,再算62+9=71。即重点研究算理和算法。如果把这个情景放在解决问题的课上,那么主要解决为什么要这样列式31+23,是因为二(1)班和二(2)班的人数合起来就可以知道能不能合乘一条船,所以要用加法做,即分析所谓的数量关系,两者的重点是完全不同的,计算教学的情景创设目的是从生活中提取数学素材,让学生体验数学与生活之间的关系。而解决问题要从具体情景中引导学生分析提供的数学信息与所求问题之间的关系,来引导学生探究解决问题的方法与策略,一旦偏离了这个中心,计算教学就会失去方向。
三、关于算法多样化与最优化。
计算方法既然存在着多样化,那么学生找出了自己的方法后,并认为哪种方法最适合自己,就应允许他使用。一种算法不是上完一节课就被搁置,对于自己找到的方法,学生有一种积极的情感,在解决问题时,学生喜欢用自己的算法,学生在解决问题过程中会不断的反思,发现原来的方法又不适合自己,对自己的方法进行改进,从而找到最好的,这本身就是一个发展能力的过程。所以,在呈现算法多样化时,教师不必急于硬性给学生灌输最优化的方法。让学生在自己的摸索过程中得出最优化的方法。也符合认知的规律。比如在《两位数加两位数的口算》这节课中,23+31=,可以允许学生采用多种的计算方法,可用23+30=53,53+1=54;也可以用20+30=50,3+1=4,50+4=54;还可用竖式计算等等方法,只要学生能想出并能计算出正确的答案,就可允许他们用,等他们用了以后他们会找出最适合自己的方法。所以在后面的32+39=中,学生就能根据自己的实际选择最优化的方法去进行计算。此外,把多种算法进行优化,可以帮助学习有困难的学生适当掌握较理想的一种算法,而不至于一节课下来,什么方法也没有学会。计算方法多样化需要优化,需要适时优化。当然,计算方法多样化也要遵循学生实际和教学内容的不同,当学生只能想出一种计算方法而且这种计算方法也是比较合理的方法时,教师不必为了追求多样化而生硬地要求学生继续思考还可以怎么计算。
在教学时我是采用教学形式、学习方式灵活多样化进行教学。新理念下提倡多样化、现实的、有趣的、探索性的学习活动,使得学生的学习是基于主体的、积极的、自信的、主动探索的、合作交流的基础,经历获得知识的过程的知识才是学生终身受用的。凡是学生能独立思考,合作探索发现的我都决定不包办代办,把自己定位在教学活动的组织者、引导者,这样才能更好地发掘学生的自立性、创造性。
做到让学生多思考多动手多实践,教学形式有分有合,方法多样,这样学生的参与面就广。
三、多样化的练习是计算教学的延伸。
数学计算教学的还有一个重要组成部分是巩固练习。这是学生对所学知识的巩固,是形成技能,技巧的重要途径,而且可以发展学生的思维能力和创造能力,也是检查学生掌握新知识情况的有力措施.,同时使学生及时了解自己练习的结果,品尝成功的喜悦,提高练习的兴趣,并且及时发现错误,纠正错误,提高练习的效果。传统的计算教学只追求量不考虑形式,学生在枯燥的练习中熟练计算技能。而在课改初期重探究轻练习的教学模式务必造成学生计算不扎实的不良趋向。计算教学的理性回归需要巩固练习,而且需要考虑学生个体的不同形式的练习。计算课与应用题课、几何课比较相对枯燥,练习的设计既要顾及知识的积淀,又要考虑学生的兴趣。授课之后,教师紧紧围绕教学目标,根据学生年龄特点精心设计多种形式的习题让学生尝试算法的运用。通过练习、比较,发现错误,教师及时指导,矫正补缺,从而提高学生计算正确率和计算速度。计算教学的练习包括巩固练习和综合练习。巩固性练习是基本练习,是例题的模仿练习,主要目的是巩固所获得的新知。综合性练习指的是综合性、灵活性较强并有一定变化发展的题目。其目的是脱离模仿,沟通知识的内在联系,促使知识转化为能力,还可以激发学生的兴趣,把已获得的知识能力上升到智力高度,培养学生的创新意识。这些练习的安排可采用不同的形式,如学生独立算、同桌对口令、开小火车、抢答、学生自己编题等等不同的形式,提高学生的学习积极性。
总而言之,纵观目前的计算教学,我们既要继承传统计算教学的扎实有效和发扬课改初期以人为本的教学理念,更要冷静思考计算教学对学生后续学习能力的培养,在传统教学与课改初期教学中总结经验,不断改善教学方法,使计算教学在算理、算法、技能这三方面得到和谐的发展和提高,真正推崇扎实有效、尊重学生个性发展的理性计算教学。
『肆』 计算方法学习了哪些内容分别解决了哪些问题
计算方法学习前,应预修微积分、算法语言、常微分方程、工程线性代数,由于科学和工程设计需要,现在“计算方法”已经成为必修的基础课。计算方法主要有误差分析、最小二乘法、数值积分、非线性方程的解法、常微分方程的数值解法等,当然了,解决的是工程实际和科学技术中的具体技术问题,将具体问题抽象为数学问题,并进行求解。
『伍』 计算方法、步骤
(一)建立水文地质概念模型
解析法对水文地质条件限制较多,有严格的理想化要求,而实际水文地质条件往往十分复杂,为了能够用解析法计算,必须对水文地质条件进行合理的简化和概化,经过简化和概化后的水文地质条件称水文地质概念模型,它是对地下水系统的定性描述。
1.分析疏干流场的水力特征
矿床的疏干流场,是在天然流场背景下,叠加人为开采因素演变而成的,因此分析疏干流场各种水力特征时,均应以天然条件为基础,充分考虑开采的影响。
(1)区分非稳定流与稳定流
一般,疏干排水时,矿区地下水多为非稳定状态,但当疏干排水量小于地下水补给量时,可出现稳定状态。
矿山开采初期(开拓阶段),开拓井巷不断发展变化,疏干漏斗的外边界不断扩展,矿坑涌水量以消耗含水层储存量为主,该阶段疏干场一般为非稳定流,矿山开采后期(回采阶段),疏干流量主要受流场外边界的补给条件所控制,在补给条件不充分的矿区,疏干流场以消耗含水层储存量为主,仍为非稳定流,在补给条件充足的矿区,或具定水头补给边界的矿区,矿坑涌水量(或疏干量)被补给量平衡,一般出现相对的稳定流,矿坑涌水量预测可以稳定井流理论为基础。
(2)区分层流与紊流
矿区地下水在疏干条件下与天然运动状态相比,在大面积内仍为层流,仅在疏干工程附近常出现紊流,故达西定律(直线渗透定律)仍然是建立确定性模型的基础。
一般,常以抽(放)水试验为依据,用单位涌水量(qi)法对层流、紊流进行判别,计算式为:
承压水
图13-7 水位降深为Sk的Q-t曲线
『陆』 学计算方法有什么用
列好的方程怎么去解,没有精确解时,怎么得到近似解?这是计算方法要解决的问题;
二元线性方程组,手算就能解。若是两万阶的线性方程组,你得有高速有效的算法才行。这也是计算方法要解决的问题!
类似的问题、各行各业、五行八门、太多太多,都离不开计算机、计算方法;
计算方法主要解决计算速度要快、计算精度要高、算法有效、容错能力强等关键问题。
可见学计算方法非常有用!
『柒』 计算方法怎么学
结合自己学习算法时的一些经历来说,下面一句话要始终记得:
自己之前也是个技术渣,但好在是一直没放弃学习,一方面坚持看书听课学习理论,另一方面自己动手去写、去实践,积累了很多方法和心得,简单地说就是一定要做到看书、听课、做题相结合,缺一不可。
『捌』 计算方法到底是什么课
计算方法是数学课。
计算方法主要内容有:插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。这是数学系的专业课。
计算方法用计算机求解数学计算问题的数值计算方法及其理论的学科。它以数字计算机求解数学问题的理论和方法为研究对象,为计算数学的主体部分。
计算方法的学习方法:
一、学生要清楚一周内所要做的事情,然后制定一张作息时间表。在表上填上那些非花不可的时间,如吃饭、睡觉、上课、娱乐等。安排这些时间之后,选定合适的、固定的时间用于学习,必须留出足够的时间来完成正常的阅读和课后作业。
二、学习前先预习。这就意味着在学生认真投入学习之前,先把要学习的内容快速浏览一遍,了解学习的大致内容及结构,以便能及时理解和消化学习内容。当然,学生要注意轻重详略,在不太重要的地方学生可以花少点时间,在重要的地方,学生可以稍微放慢学习进程。
三、充分利用课堂时间。学习成绩好的学生很大程度上得益于在课堂上充分利用时间,这也意味着在课后少花些功夫。课堂上要及时配合老师,做好笔记来帮助自己记住老师讲授的内容。
四、学习要有合理的规律。课堂上做的笔记学生要在课后及时复习,不仅要复习老师在课堂上讲授的重要内容,还要复习那些学生仍感模糊的认识。如果学生坚持定期复习笔记和课本,并做一些相关的习题,学生定能更深刻地理解这些内容,学生的记忆也会保持更久。
『玖』 小学数学计算方法有哪些
小学学的计算方法不外乎加减乘除
还有分数的运算,小数的运算和单位之间的互相运算等等