当前位置:首页 » 法学百科 » 数学设立法

数学设立法

发布时间: 2022-05-06 07:59:41

❶ 常见的建立数学模型的方法有哪几种

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义

❷ 数学归纳法怎么用

  • (一)第一数学归纳法:

    一般地,证明一个与自然数n有关的命题P(n),有如下步骤:

    (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;

    (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。

    综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。

    (二)第二数学归纳法:

    对于某个与自然数有关的命题P(n),

    (1)验证n=n0时P(n)成立;

    (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。

    综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。

    (三)倒推归纳法(反向归纳法):

    (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);

    (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立,

    综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立;

    (四)螺旋式归纳法

    对两个与自然数有关的命题P(n),Q(n),

    (1)验证n=n0时P(n)成立;

    (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立;

    综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。

  • 解题要点

数学归纳法对解题的形式要求严格,数学归纳法解题过程中,

第一步:验证n取第一个自然数时成立

第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。

最后一步总结表述。

需要强调是数学归纳法的两步都很重要,缺一不可,否则可能得到下面的荒谬证明:

  • 应用

(1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。(2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。(3)证明数列前n项和与通项公式的成立。(4)证明和自然数有关的不等式。

❸ 建立数学模型有哪两类主要方法

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.

模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.

模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.
模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.

模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.
模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.
模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.
模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式

❹ 数学计算题(设元法)

设t=1/12+1/13+1/14+1/15,
则原式=(1/11+1/t)*(1/t+1/16)-(1/11+1/t+1/16)*t=t/11+t^2+1/(11*16)+t/16-t/11-t^2-t/16
=1/(11*16)

❺ 如何建立高中数学学习方法

一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变 初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。 2、思维方法向理性层次跃迁 高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。 3、知识内容的整体数量剧增 高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。 4、知识的独立性大 初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。2、及时了解、掌握常用的数学思想和方法 学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。 4、针对自己的学习情况,采取一些具体的措施 ² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中 拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 ² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 ² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化 或半自动化的熟练程度。 ² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化, 使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 ² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课 外题,加大自学力度,拓展自己的知识面。 ² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩 固,消灭前学后忘。 ² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解 题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 ² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学 思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 ² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,这是学好数学的重要问题。 对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。 其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

❻ 数学归纳法的基本步骤

1、(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;

2、(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立。

这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。

(6)数学设立法扩展阅读

没有运用归纳假设的证明不是数学归纳法.在n=k到n=k+1的证明过程中寻找由n=k到n=k+1的变化规律是难点,突破的关键是分析清楚p(k)与p(k+1)的差异与联系,

利用拆、添、并、放、缩等手段,从p(k+1)中分离出p(k).证明不等式的方法多种多样,故在用数学归纳法证明不等式的过程中,比较法、放缩法、分析法等要灵活运用。

❼ 数学建模怎么建立模型

1、模型准备

首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2、模型假设

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3、模型构成

根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4、模型求解

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

5、模型分析

对模型解答进行数学上的分析。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论哪种情况都需进行误差分析,数据稳定性分析。


6、模型检验

把数学上分析的结果翻译回到现实问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。

7、模型应用

取决于问题的性质和建模的目的。

❽ 从1到n成立的数学方法

给你打个很简单的比方。
叫10个人从左往右排成一排,我现在告诉你说:这一排人中右边的人比左边的人都帅,而且第一个人是帅的。那么是不是就很容易知道了第10个人也是帅的呢?哈哈,就是这个道理哟,这里的人数就相当于n,n=1就是第一个人,n+1就是第二个人,自己类比着想把。

❾ 建立数学模型的方法和步骤

第一、 模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 第三、 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 第五、模型分析 对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不"。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

❿ 什么叫数学归纳法

概述 数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。 编辑本段 基本步骤 (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (三)倒推归纳法(反向归纳法): (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; (四)螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 编辑本段 应用 (1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。 (2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。 (3)证明数列前n项和与通项公式的成立。 (4)证明和自然数有关的不等式。 编辑本段 变体及应用 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不是针对全部自然数,而只是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,...,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,...,m,原命题均成立。如果命题P(n)在n=1,2,3,......,t时成立,并且对于任意自然数k,由P(k),P(k+1),P(k+2),......,P(k+t-1)成立,其中t是一个常量,那么P(n)对于一切自然数都成立. 其它形式 如跳跃数学归纳法的定义 通常,跳跃数学归纳法的第二步总是由k推出,跨度为n 。但是并不是对于所有的问题都能解决. 编辑本段 合理性 数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理)。但是在另一些公理的基础上,它可以用一些逻辑方法证明。比如,由下面的公理可以推出数学归纳法原理: 自然数集是良序的。 注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式。更确切地说,两者是等价的。 编辑本段 历史 已知最早的使用数学归纳法的证明出现于Francesco Maurolico的Arithmeticorum libri o(1575年)。Maurolico利用递推关系巧妙的证明出证明了前n个奇数的总和是n^2,由此揭开了数学归纳法之谜。 最简单和常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成: 递推的基础:证明当n=1时表达式成立。 递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立。 这种方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的。如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中。 或许想成多米诺效应更容易理解一些,如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定: 第一张骨牌将要倒下,只要某一个骨牌倒了,与之相邻的下一个骨牌也要倒,那么你就可以推断所有的的骨牌都将要倒。 这样就确定出一种递推关系,只要满足两个条件就会导致所有骨牌全都倒下: (1)第一块骨牌倒下; (2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。 这样,无论有多少骨牌,只要保证(1)(2)成立,就会全都倒下。 解题要点: 数学归纳法对解题的形式要求严格,数学归纳法解题过程中, 第一步为:验证n取第一个自然数时成立 第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。 最后一步总结表述

热点内容
宰杀家禽法律法规 发布:2025-01-11 16:24:48 浏览:237
在我国会计法规 发布:2025-01-11 16:23:10 浏览:556
袁世凯立法称帝 发布:2025-01-11 15:26:46 浏览:733
大同肖律师 发布:2025-01-11 15:25:57 浏览:13
儿童虚拟游戏法规 发布:2025-01-11 15:23:05 浏览:111
车锁有问题厂家法律责任 发布:2025-01-11 15:17:47 浏览:577
2017劳动法主动辞职 发布:2025-01-11 15:15:24 浏览:403
法律公司开业典礼新闻稿 发布:2025-01-11 14:24:52 浏览:494
中华全民共和国合同法 发布:2025-01-11 14:20:17 浏览:238
劳动法中关于被辞退员工工资待遇 发布:2025-01-11 13:45:31 浏览:550