贵阳市加减乘除法解题社会治理
1. 加减乘除法的计算方法是什么
还有给孩子用的速算法:
十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
2. 有加减乘除时为什么要先算乘除再算加减
因为这是一个数学四则运算中的规定,之所以这样规定,是因为在应用题中(也就是实际应用中,同时有乘除和加减时,先算乘除的远比先算加减的多的多,这样可以减少不少加括号的麻烦。
四则运算的性质:
1、几个数的积乘一个数,可以让积里的任意一个因数乘这个数,再和其他数相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
2、两个数的差与一个数相乘,可以让被减数和减数分别与这个数相乘,再把所得的积相减。例如: (137-125)×8=137×8-125×8=96。
3、若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数不变。例如:68÷17×17=68(或68×17÷17=68)。
(2)贵阳市加减乘除法解题社会治理扩展阅读:
四则运输的注意事项:
1、如果只有加和减或者只有乘和除,从左往右计算,例如:2+1-1=2,先算2+1的得数,2+1的得数再减1。
2、如果一级运算和二级运算,同时有,先算二级运算。
3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。
4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。
5、在括号里面,也要先算三级,然后到二级、一级。
参考资料来源:网络-四则运算
3. 加减乘除对策
加减乘除法的这个对策就是只要是有乘以算乘有出现除有加先加,有减算减,先算乘除,再算加减。
4. 加减乘除法各部分之间的关系
如果在一道算式里有加减乘除,那么就要先算乘除后算加减,有括号的就要先算括号里面的
5. 小学数学加减乘除法,求解!!!
望采纳
6. 加减乘除去括号顺口溜有哪些
加减法去括号口诀:去添括号,关键看符号,括号前面是正号,去、添括号不变号;括号前面是负号,去、添括号都变号。
乘除法去括号口诀:括号前面是除号,去掉括号变符号;括号前面是乘号,去掉括号不变号。去括号法则的依据是乘法分配律。括号前的符号是去括号后括号内各项是否变号的依据。
混合运算法则
(1)算式里只有加减法,则依次计算;只有乘除法,也依次计算。
(2)算式里既有加减法又有乘法,先算乘法,后算加减法。
(3)算式里既有加减法又有除法,先算除法,后算加减法。
(4)每一步不参加计算的部分,要位置、符号不变地抄下来,保证等号前后应该相等。
(5)小括号在混合运算中的作用是改变运算顺序。带小括号的混合运算的运算顺序:先算小括号里面的,后算小括号外面的。
7. 加减乘除法的法则 是什么啊
【七种"加减乘除"法速算法则】
1.任意一个数乘以11;1345×11=?
特征:任意一个数乘以11
原理:假设任意四位数是(1000a+100b+10c+d),乘以11
(1000a+100b+10c+d)×11
=10000a+1000b+100c+10d+1000a+100b+10c+d
=10000a+1000(a+b)+100(b+c)+10(c+d)+d
方法:先把被乘数个位上的数字写在积的个位上,然后从右向左把被乘数相邻两个数相加,
把和写在积的十位、百位……上(如果满10,则进位),最后把被乘数最高位上的数字写在
积的最高位。(若有进位,要加上进位数字)
实例1:
1345×11=14795
分析:
被乘数:1345;乘数:11;积:14795
积个位上的5,等于被乘数的个位数字5。
积十位上的9,等于被乘数的个位数字5与十位数字4的和,5+4=9。
积百位上的7,等于被乘数的十位数字4与百位数字3的和,4+3=7。
积千位上的4,等于被乘数的百位数字3与千位数字1的和,3+1=4。
积万位上的1,等于被乘数的万位数字1。
实例2:
9995×11=109945
分析:
被乘数:9995;乘数:11;积:109945
积个位上的5,等于被乘数的个位数字5。
积十位上的4,等于被乘数的个位数字5与十位数字9的和的个位,9+5=14,取4。
积百位上的9,等于被乘数的十位数字9与百位数字9的和的个位,9+9=18,18+进位1=19,取9。
积千位上的9,等于被乘数的百位数字9与千位数字9的和的个位,9+9=18,18+进位1=19,取9。
积万位与十万位上的10,等于被乘数的万位数字9+进位1=10。
实例3:
6891×11=75801
分析:
被乘数:6891;乘数:11;积:15801
积个位上的1,等于被乘数的个位数字1。
积十位上的0,等于被乘数的个位数字1与十位数字9的和的个位,9+1=10,取0。
积百位上的8,等于被乘数的十位数字9与百位数字8的和的个位,9+8=17,17+进位1=18,取8。
积千位上的5,等于被乘数的百位数字8与千位数字6的和的个位,8+6=14,14+进位1=15,取5。
积万位7,等于被乘数的万位数字6+进位1=7。
二、被乘数和乘数都是小于100的两位数,并且个位数字都是1;41×51=?
特征:被乘数和乘数都是小于100的两位数,并且个位数字都是1。
原理:假设被乘数是(10a+b);乘数是(10m+b)
(10a+b)×(10m+b)
=100am+10ab+10bm+b×b
=100am+10bm+10ab+b×b
=100am+10b(m+a)+b×b
因为b=1,那么
=100am+10(m+a)+1×1
=100am+10(a+m)+1
实例1:
41×71=2911
分析:
被乘数:41;乘数:71;积:2911
在积个位上写数字1。
积十位上的1,等于被乘数的十位数字4与乘数的十位数字7的和的个位,7+4=11,取1,产生进位,向百位进1。
积百位上的9和千位上的2,等于被乘数的十位数字4与乘数的十位数字7的积,7×4=28,加上进位1,实际值是29。
29=7×4+进位1
实例2:
31×61=1891
分析:
被乘数:31;乘数:61;积:1891
在积个位上写数字1。
积十位上的9,等于被乘数的十位数字3与乘数的十位数字6的和,3+6=9。
积百位上的8和千位上的1,等于被乘数的十位数字3与乘数的十位数字6的积,6×3=18。
18=6×3
三、被乘数和乘数都是小于100的两位数,并且个位数字都是9;99×99=?;29×39=?
特征:被乘数和乘数都是小于100的两位数,并且个位数字都是9。
原理:假设被乘数是(10a+b);乘数是(10m+b),且(10a+b+1)=A,(10m+b+1)=B
(10a+b)×(10m+b)
=(A-1)×(B-1)
=AB-A-B+1
=AB-(A+B)+1
实例1:29×39=1131
被乘数:29;乘数:39;积:1131
在积个位上写数字1。
29+1=30=A,39+1=40=B,相乘积是1200
29+1=30=A,39+1=40=B,相加和是70
所以AB-(A+B)-1=1200-70+1=1131
实例2:
99×99=9801
被乘数:99;乘数:99;积:9801
在积个位上写数字1。
被乘数:99+1=100=A,乘数:99+1=100=B,相乘积是10000
被乘数:99+1=100=A,乘数:99+1=100=B,相加和是200
所以AB-(A+B)-1=10000-200+1=9800+1=9801
四、30以内任意两个两位数乘积的速算;21×22=?
特征:被乘数和乘数都是在20到30之间
方法:把被乘数的尾数移加到乘数上,然后求积,最后再加上尾数之积。
实例1:
21×22=462
分析:21的尾数是1;22的尾数是2;如果把21的尾数移加到22上,即:22+1=23;
那么21就变成20了,21-1=20。
21×22=20×23+1×2=460+2=462
实例2:24×29=20×33+4×9=660+36=696
特征:被乘数和乘数都是在20以内
方法:把其中一个因数的尾数移加到另一个因数上,然后补一个0,
最后再加上尾数之积。
实例3:11×11=120+1×1=121。
120=(11+1)×10=120
13×19=220+3×9=220+27=247
15×18=230+40=270
五、乘数是9、99、999……的速算;25×9=?;133×9=?
特征:当被乘数的位数和乘数中9的个数不相同时
方法:只要在被乘数的末尾添加上和9的个数
一样多的0做被减数,最后减去被乘数。
实例:25×9=250-25=225
分析:因为乘数里有1个9,所以25后面添加一个0,变成250
133×99=13300-133=13167
分析:因为乘数里有2个9,所以133后面添加2个0,变成13300
99×9999=990000-99=989901
分析:因为乘数里有4个9,所以99后面添加4个0,变成990000
特征:当被乘数的位数和乘数中9的个数相同时
实例:25×99=2475
分析:被乘数是25;乘数是99;25-1=24,24会被作为积的前面两位;
积的后两位75=(100-25)
实例:88×99=8712
分析:被乘数是88;乘数是99;88-1=87,87会被作为积的前面两位;
积的后两位12=(100-88)
实例:511×999=510489
分析:被乘数是511;乘数是999;511-1=510,510会被作为积的前面三位;
积的后三位489=(1000-511)
六、两位数乘法:十位数相同,两个个位数之和等于10;56×54=?;37×33=?
特征:被乘数和乘数十位上的数字相同,被乘数和乘数个位上的数字的和是10。
方法:假设被乘数是:a×10+b;乘数是:m×10+c;
(a×10+b)×(a×10+c)
=a×(a+1)加上(b×c)
把十位数乘以(十位数+1)的积,作为积的前两位;
把两个个位数之积,作为积的后两位。
实例1:
58×52
=5×(5+1)×100+(8×2)
=30×100+16
=3016
实例2:
11×19
=1×(1+1)×100+(1×9)
=2×100+9
=209
实例3:
95×95
=9×(9+1)×100+(5×5)
=90×100+25
=9000+25
=9025
七、两位数乘法:被乘数的两个数之和等于10, 乘数由同一个数字组成:37×33
特征:被乘数的两个数位上的数之和等于10,乘数两个数位上的数相同。
方法:把被乘数的十位上的数加1,用所得的和乘以乘数十位上的数字,所得的积作为积的前两位;
把两数的个位数之积,作为积的后两位。
实例1:
46×77
=(4+1)×7×100+6×7
=5×7×100+42
=3500+42
=3542
实例2:
91×66
=(9+1)×6×100+1×6
=10×6×100+6
=6000+6
=6006
实例3:
37×33
=(3+1)×3×100+7×3
=4×3×100+21
=1200+21
=1221
8. 加减乘除解答
递等式计算3+27÷3×2
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
3+27÷3×2
=3+9×2
=3+18
=21
(8)贵阳市加减乘除法解题社会治理扩展阅读#竖式计算-计算结果:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:3+8=1 向高位进1
步骤二:0+1+1=2
根据以上计算步骤组合计算结果为21
存疑请追问,满意请采纳
9. 加减乘除怎么出题
脱式计算例子解析27+38×15
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
27+38×15
=27+570
=597
(9)贵阳市加减乘除法解题社会治理扩展阅读-竖式计算-计算结果:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:5×38=190
步骤二:1×38=380
根据以上计算结果相加为570
存疑请追问,满意请采纳
10. 加减乘除去括号方法
1.加减运算顺口溜及例题
去添括号,关键看符号,
括号前面是正号,去、添括号不变号;
括号前面是负号,去、添括号都变号。
(1)括号前面是正号,去、添括号不变号
14+(15+16)
=14+15+16
=29+16
=45
(2)括号前面是负号,去、添括号都变号
45-(16+15)
=45-16-15
=29-15
=14
2.乘除运算顺口溜及例题
去添括号,关键看符号,
括号前面是乘号,去掉括号不变号;
括号前面是除号,去掉括号变符号。
(1)括号前面是乘号,去掉括号不变号
9×(3×2)
=9×3×2
=27×2
54
(2)括号前面是除号,去掉括号变符号
8÷(4÷3)
=8÷4×3
=2×3
=6
3.去括号法则
去括号法则,是数学科的一条法则。
括号前面是加号时,去掉括号,括号内的算式不变。括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。
法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据。
要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。