当前位置:首页 » 司民刑商 » 有限差商法

有限差商法

发布时间: 2022-04-17 05:13:42

1. 什么是有限差分,怎么进行分析

有限差分法(FDM)的起源,讨论其在静电场求解中的应用.以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位.由此,绘制了整个场域的等位线和电场强度矢量分布.同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布.
有限差分法
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
分类
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式
时域有限差分法在GIS局部放电检测中的应用
1 前言
GIS由于其占地面积小以及高度的可靠性被广泛应用,但也有因为固定微粒、自由微粒以及绝缘子内部缺陷而发生的绝缘故障。一般发生绝缘故障都伴随有局部放电发生,因而局部放电检测是诊断电力设备绝缘状况的有效方法之一。超高频局部放电检测方法因为具有强的抗干扰能力和故障点定位能力而受到制造厂家和研究部门的普遍关注,并且已有部分产品应用于现场。超高频局部放电检测方法一般直接检测出局部放电脉冲的时域信号或者频谱信号,因为不同的研究者所研制的检测用传感器的带宽和检测系统(内部传感器法和外部传感器法)不同,以及传感器和局部放电源的相对位置对检测结果的影响,检测所得结果存在较大差异,缺乏可比性,因此有必要对局部放电信号的传播规律进行研究。
时域有限差分(Finite-Difference Time-Domain)法最早是由KaneS.Yee在1966年提出的,是一种很有效的电磁场的数值计算方法,不需要用到位函数,是一种在时间域中求解的数值计算方法。这种方法被应用于天线技术、微波器件、RCS计算等方面。
本文借助时域有限差分法对252KV GIS内部局部放电所激发的电磁波传播进行仿真,并用外部传感器超高频局部放电检测方法在实验室对252kV GIS固定高压导体上的固定微粒局部放电信号进行实测,仿真结果和实验结果基本一致,为超高频局部放电检测结果提供了有效的理论依据。
2 时域有限差分法
时域有限差分法是一种在时域中求解的数值计算方法,求解电磁场问题的FDTD方法是基于在时间和空间域中对Maxwell旋度方程的有限差分离散化一以具有两阶精度的中心有限差分格式来近似地代替原来微分形式的方程。FDTD方法模拟空间电磁性质的参数是按空间网格给出的,只需给定相应空间点的媒质参数,就可模拟复杂的电磁结构。时域有限差分法是在适当的边界和初始条件下解有限差分方程,使电磁波的时域特性直接反映出来,直接给出非常丰富的电磁场问题的时域信息,用清晰的图像描述复杂的物理过程。网格剖分是FDTD方法的关键问题,Yee提出采用在空间和时间都差半个步长的网格结构,通过类似蛙步跳跃式的步骤用前一时刻的磁、电场值得到当前时刻的电、磁场值,并在每一时刻上将此过程算遍整个空间,于是可得到整个空间域中随时间变化的电、磁场值的解。这些随时间变化的电、磁场值是再用Fourier变换后变到相应频域中的解。
在各向同性媒质中,Maxwell方程中的两个旋度方程具有以下形式(式(1)~(2))。

式中,ε为媒质的介电常数;μ为媒质的磁导率;σ为媒质的电导率;σ*为媒质的等效磁阻率,它们都是空间和时间变量的函数。
在直角坐标系中,矢量式(1)~(2)可以展开成以下六个标量式。

为了用差分离散的代数式恰当地描述电磁场在空间的传播特性,Yee提出了Yee Cell结构,在这种结构中,每一磁场分量总有四个电场分量环绕,同样每一电场分量总有四个磁场分量环绕,Yee对和分量在网格单位上的分布情况如图1所示。为达到精度,Yee计算和时在时间上错开半个步长,用中心差商展开偏微分方程组,得到x轴方向电场和磁场FDTD迭代公式(式(9)~(10)),Y轴和z轴迭代公式与x轴迭代公式成对称形式(略)。

FDTD方法是Maxwell方程的一种近似求解方法,为了保证计算结果的可靠性,必须考虑差分离散所引起的算法稳定性和数值色散问题,时间步长和空间步长应满足(11)~(12)条件。

其中,δ=min(△x,△y,△z);υmax为电磁波在媒质中传播的最大相速;λmin为电磁波在媒质中的最小波长值。
式中△x,△y和△z分别是在x,y和z坐标方向的空间步长,△t是时间步长,ij和k和n是整数。
3 GIS局部放电电磁仿真和超高频检测
SF6气体绝缘的GIS中局部放电的脉冲持续时间极短,其波头时间仅几个ns。为了简化分析,将局部放电电流看成对称脉冲,一般用如下的Gaussian形状的脉冲模型来表示,根据式13和文献6本文仿真用局部放电源高斯脉冲的峰值电流取30mA,脉冲宽度取5ns,波形如图2所示。

GIS局部放电信号频带较宽,用于接收信号的传感器(天线)应该满足检测要求,本文采用超宽带(300MHz~3000MHz)自补结构的双臂平面等角螺旋天线,天线结构如图3所示。

该天线在一定频率范围内可以近似认为具有非频变天线的特性,因为GIS局放信号的频率是在一个范围内变化,对于不同频率的GIS局放信号,该天线的阻抗不随频率变化,可方便实现天线和传输线的阻抗匹配,避免波形畸变。用HP8753D网络分析仪对天线的驻波比进行测试,结果在300MHz~3000MHz的频率范围内驻波比小于2.0,根据电磁理论当驻波比小于2.0时可以不考虑驻波的影响,表明该平面等角螺旋天线在设计频率具有良好的频响特性,所测结果可靠。
超高频法把GIS看作同轴波导(如图4所示),局部放电产生的短脉冲沿轴向传播,传感器作为接收天线,接收局部放电所激发的电磁波。

本文针对252KV GIS内高压导体上φ0.05×lcm固定突起发生局部放电进行模拟,GIS内部高压导体外直径为10.2cm,外壳内直径为29.4cm,长度为4米。采用1×l×lcm网格进行剖分,边界用完全匹配层(PML)材料吸收边界,其中绝缘子相对介电常数取3.9。采用IMST Empire电磁仿真软件分别对图4的GIS发生局部放电时内部点1和外部点2处的信号进行仿真,仿真结果如图5所示。
图5(a)和(b)的仿真结果表明在GIS内部发生局部放电时,局部放电脉冲可以激发上升沿很陡的信号,由于其内部为不连续波导结构,电磁波在其内部将引起反射和复杂谐振,频率成分可高达GHz。另外,比较内部点1和外部点2处的仿真结果,内部点1处的信号幅值是外部点2处的两倍,表明信号可以从绝缘缝隙泄漏,但由于绝缘子和缝隙的影响幅值将明显发生衰减,并且信号在绝缘缝隙处发生的折射和散射,外部信号比内部信号复杂。图5(c)表明局部放电频带比较宽,可高达GHz,信号成分较为丰富。

采用外部传感器超高频局部放电检测系统对252KV GIS内高压导体φ0.05×1cm固定突起局部放电进行实测。由于局部放电信号比较微弱,加之高频信号传播过程中衰减较大,在测试系统中采用增益不低于20dB的宽带放大器。在实验过程中对空气中的局部放电高频信号进行衰减特性研究发现该检测系统有效检测范围为17米。在外部点2处(距离GIS外壳绝缘缝隙10cm)的检测结果如图6所示。比较图5(b)和图6表明,仿真结果和实测结果基本一致,这个结论为超高频局部放电检测结果提供了理论支持。

超高频局部放电检测方法已经表明是非常有效的局部放电检测方法,本文借用时域有限差分法从信号的时域特征出发来验证局部放电检测结果,但由于不同电压等级的GIS结构存在差异,以及故障微粒的状态不同,对检测结果都有影响,并且目前还没有找出超高频方法和传统检测方法之间的内在关系,有待进一步深入研究。
4 结论
时域有限差分法对GIS局部放电脉冲所激发的电磁波仿真结果表明,局部放电信号上升沿较陡,频率可达GHz;由于绝缘子以及绝缘缝隙的影响,使得同轴波导结构不连续,将产生很复杂的电磁波。
a.由于绝缘子以及绝缘缝隙的影响,使信号幅值发生明显衰减,外部信号的幅值是内部信号幅值的一半。
b.实验结果和仿真结果基本一致,进一步从理论上论证了超高频局部放电检测方法的有效性。

2. 什么叫做差分法差分法的具体步骤是什么

差分法的定义及具体步骤如下:
一、差分法是微分方程的一种近似数值解法。具体地讲,差分法就是把微分用有限差分代替,把导数用有限差商代替,从而把基本方程和边界条件(一般均为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程的问题改换成为求解代数方程的问题。在弹性力学中,用差分法和变分法解平面问题。
二、差分法的具体步骤:
1、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;
2、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
3、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
4、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。

3. 1有限差分法主要解决哪几类问题 2差分格式主要有哪几种 3中间差分是怎么来的

微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下:
1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
2、近似替代,即采用有限差分公式替代每一个格点的导数;
3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程(Leon,Lapis,George F.Pinder,1985)

4. 有限差分法的偏微分方程初值问题的差分法

许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。 最简单的双曲型方程的初值问题是:


式中 为已知初值函数。这初值问题的解是:

由(2)可见,(1a)(1b)的解(2)当a>0时代表一个以有限的速度a沿特征线x-at=常数向右传播的波,而解 在点 的值完全由 在x轴上的点 的值决定。A点就是双曲型方程(1a)在P点的依赖域(图1)。现以初值问题(1)为例介绍初值问题差分方法的基本思想。

①剖分网格
用网格覆盖(1a),(1b)的定解区域,如图2所示,在x,t平面的上半部作两族平行于坐标轴的直线:

并称之为网格线。 分别称为空间步长和时间步长。网格线的交点 称为格点。

②建立差分格式
以下除特别声明外,总设a>0,由泰勒公式,有:



式中

是微分方程(1a)用它的解在相邻三个格点(见图2)上的值的差分来表示的形式。略去(4)中关于 高阶项 ,得到一个较简单的差分方程,但微分方程的解 不再是这方程的解,设这个方程的解是 , 满足的方程是:

式(6)还可写成:

初值条件(1b)此时就是:
差分方程(6)和相应的初值条件(7)合称差分格式,利用这些格式可逐步算出t=△t,2△t,…各时间层的 , ,…,等等。这个把微分方程化为近似的差分方程的过程常称为离散化。
③差分格式的截断误差和相容性
(5)中的是把微分方程充分光滑的解代入差分方程(6)的结果,它说明微分方程(1a)和差分方程(6)的区别,称为差分格式(6)的截断误差,式(6)的截断误差对△t和△x都是一阶的,写成O(△x+△t),因此称差分格式(6)为一阶相容格式。一般说,如果△x,△t趋于零,截断误差也趋于零,则差分方程与微分方程是相容的。不相容的格式的解不能作为原微分方程的近似解,因而是无用的。方程(1a)的离散化过程也不是唯一的。例如取数值微分公式:

代替微分方程(1a)中的 ,可得另一个差分方程:

它的截断误差是O(△x+△t)阶的,也是相容的差分格式,再若用数值微分公式

代替(1a)中的 ,又得到截断误差为O(△x+△t)的相容差分格式:
但是,并不是每个相容格式都有用。
④差分格式的收敛性
设 是求解区域中的一点,取步长 使 ,用差分格式算出 ,如果当△x,△t→0时, 便可用步长 充分小时的作为微分方程的解 的近似,这种差分格式便是收敛的。
双曲型微分方程的解,对求解区域内一点 而言,在初值区域内有一个依赖域,差分方程也是如此,对于差分方程(6),点 的依赖域是初值线上区间 。如令 =常数, ,则差分方程(6)在点 的依赖域为 ,并且步长比r固定时,依赖域与 无关。
差分方程(9)在 的依赖域是 ,而差分方程(11)的依赖域则是 ,R.库朗等人曾经证明,差分格式收敛的一个必要条件是差分方程的依赖域应包含微分方程的依赖域,这个条件叫作“库朗条件”。从图3中可以看到,对于差分方程(6),这个条件是 ,即 。对于格式(9),库朗条件是 ,两者不同。对于格式(11),库朗条件是 ;在a>0时,显然不能成立,所以格式(11)当a>0时不收敛,因而也是无用的。格式(6)在a>0而库朗条件 满足时,的确是收敛的。因为 离散化误差 适合


由此可知:

又因差分格式与微分方程的初值相同, 。于是可知

这说明条件 满足时,格式(6)收敛。
如果a<0,格式(6)不收敛。但当 时,格式(11)收敛。这两个格式称为“迎风格式”,因为a>0时, 用向后差商代替,往上风取近似值;当a<0时则用向前差商代替,也是往上风取近似值。可见作(1)的差分格式时,要考虑波的传播方向。
⑤差分格式的稳定性
用一个差分格式计算 时,初值 的误差必然要影响到以后各层 。通常希望这误差的影响不会越来越大,以致完全歪曲了差分方法的真解,这便是稳定性问题。讨论时,常把问题化简,设初值 有误差 ,而以后的计算并不产生误差,由于误差 ,使 变成了 ,但 仍满足 所适合的差分格式。定义一种衡量t=tn层格点上 的大小的所谓范数 ,若有常数K>0使当△t、△x→0而0≤t=n△t≤T时,恒有 ,则称此差分格式是稳定的。以格式(6)为例,适合差分方程:


这说明,用格式(6)计算时,若步长比合于库朗条件,则初值误差的影响不增长,取使△t缩小,算到t=T时,也不再增大,因而格式是稳定的。
对于线性偏微分方程组的稳定性理论,J.von诺伊曼曾用傅里叶分析作了系统研究,把差分方程的解表成谐波的叠加,考察其中一个谐波

的增长情况,式中k为实数;G=G(k,△t)称为增长因子。若对于一切谐波,(12)的振幅一致有界,即对一切合于O≤n△t≤T的n和充分小的△t都有|Gn|≤K,K为常数,则此差分格式是稳定的。具体地说,对格式(6),把(12)代入(6),得:

故当 时,|G|≤1,解的振幅不增加,所以格式(6)是稳定的。
相容性和库朗条件都不能保证稳定性,例如对格式(9),把(12)代入,得:


故当sin k△x≠0时,恒有|G|>1,解的振幅逐层增加,所以虽然格式(9)是相容的格式,并且适合库朗条件,但它仍是不稳定的,因而也是无用的。
P.D.拉克斯1956年曾证明,对于线性偏微分方程组的适定的初值问题,一个与之相容的线性差分格式是收敛的格式的充分必要条件是这格式的稳定性。
非线性问题没有相应的等价定理。 物理上的定常问题,如弹性力学中的平衡问题,亚声速流、不可压枯性流、电磁场及引力场等可归结为椭圆型方程。其定解问题为各种边值问题,即要求解在某个区域D内满足微分方程,在边界上满足给定的边界条件。椭圆型方程的差分解法可归结为选取合理的差分网格,建立差分格式,求解代数方程组以及考察差分格式的收敛性等问题。
偏微分方程边值问题的差分方程组的特点是系数矩阵中非零元素很少,即是稀疏矩阵。近年来由于稀疏矩阵技术的发展,解差分方程组时,直接法受到了较多的重视。迭代法是用逐次逼近的方式得到差分方程组的解,它的存储量小,程序简单,因此常用于椭圆型差分方程组的求解。迭代方法很多,最基本的有三种:①同时位移法(也称雅可比法)②逐个位移法(也称赛德耳法)③松弛法三个方法中超松弛法收敛最快,是常用的方法之一。

5. 有限差分法(Finite Difference)、有限体积法(Finite Volume)、有限元法(Finite element)怎样辨析

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将 求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级 数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而 建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分 的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可 以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式 的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步 长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达 式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等, 其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几 种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分 方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式 ,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形 网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数 ;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域 内选取N个配置点 。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和解题步骤可归纳为
(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条 件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元 具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将 近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点 的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进 行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件, 一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法 则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭 方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就 是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控 制体积中的守恒原理一样。 限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制 体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程 中不同的项采取不同的插值函数。

6. 计算流体力学中有限差分法,有限体积法和有限元法的区别

有限差分法是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
有限体积法又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。
有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。 采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.

7. 有限差分法的概述

微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。
定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。

8. 什么是有限元法和有限差分法

有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。

有限差分方法(finite difference method)一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。

(8)有限差商法扩展阅读:

有限差分法(FDM)的起源,讨论其在静电场求解中的应用。以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位。由此,绘制了整个场域的等位线和电场强度矢量分布。同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布。

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

9. 在求解传热学问题时有限差分法和有限体积法的区别

有限差分方法(Finite Difference Method)
有限差分法是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限体积法(Finite Volume Method)
有限体积法又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

10. 有限差分法

有限差分法是以差分原理为基础的一种数值计算法。它用各离散点上函数的差商来近似替代该点的偏导数,把要解的边值问题转化为一组相应的差分方程。然后,解出差分方程组(线性代数方程组)在各离散点上的函数值,便得边值问题的数值解。

现以二维等步长差分格式为例,说明有限差分法的原理和方法步骤。

1.区域离散化,作网格剖分

图1⁃4⁃1 二维等步长正方形网络

如图1⁃4⁃1所示,用平行于坐标轴的两组直线族将地下划分成正方形网格,相邻两坐标线的距离为h,则任一点的x、z坐标为

x=ih(i=0,1,2,…,M)

z=kh(k=0,1,2,…,N)

每个正方形为一单元,其边长h称为步长,网格的交点称为节点。任一节点的坐标(x,z)可表示为(ih,kh),或简化为(i,k),用阶梯状折线代替原来的曲线段。在边界线以内的节点称为内节点,边界上的节点称为边界节点。

2.微分方程离散化,构组差分方程

某一内节点(i,k)处的电位为U(i,k),由于h很小,可将节点(i,k)四周的电位在节点处展成泰勒级数:

地电场与电法勘探

地电场与电法勘探

地电场与电法勘探

地电场与电法勘探

式中Ux,Uxx,……和Uz,Uzz,……分别表示U对x和z的一阶导数、二阶导数等。将前两个式子相加,并且忽略h的四次项与更高次项,经整理可得:

地电场与电法勘探

同理得:

地电场与电法勘探

将上述Uxx和Uzz代入含源分区均匀岩石中位函数U所满足的微分方程(1⁃4⁃16)的第二式,即得二维函数U(x,z)的差分方程:

U(i+1,k)+U(i,k-1)+U(i-1,k)+U(i,k+1)-4U(i,k)=h2f(1⁃4⁃18)

对于无源分区均匀介质,位函数 U(x,z)所满足的微分方程(1⁃4⁃17)的差分方程为

U(i+1,k)+U(i,k-1)+U(i-1,k)+U(i,k+1)-4U(i,k)=0(1⁃4⁃19)

3.线性方程组的形成与求解

对于边界节点,其相应的差分方程可根据边界条件给出。全部结点所建立差分方程(1⁃4⁃18)和(1⁃4⁃19)的总和可分别写成以下矩阵形式:

〔A〕·{U}={F}(1⁃4⁃20)

〔A〕·{U}=0(1⁃4⁃21)

〔A〕是方程组的系数矩阵,它是与电阻率分布有关的函数;{U}是电位U的列向量,其分量为所有节点上的电位;{F}是常向量。当给定电阻率分布及边界条件后,解线性方程(1⁃4⁃20)和(1⁃4⁃21),便可求得电位的空间分布。

电位{U}值的计算精度与步长h的大小有很大关系。一般说来,网格划分越细,即h值越小,{U}值与理论值就越接近。但是此时节点数目也急剧增加,因而所需的计算机内存和计算时间也就会增大。解决计算速度与精度这一矛盾的较好方法是采用变步长,即在近区将网格分得密些,远区影响较小可分得稀些。

热点内容
公司法律风险解决方案 发布:2025-01-18 14:45:04 浏览:605
两项新民法 发布:2025-01-18 13:43:27 浏览:491
民法115条 发布:2025-01-18 13:40:23 浏览:128
人民法院错案追究 发布:2025-01-18 13:21:33 浏览:81
治安处罚条例新 发布:2025-01-18 12:48:20 浏览:573
占用红树林保护区的法律责任 发布:2025-01-18 12:14:06 浏览:15
北京刑事没输过律师 发布:2025-01-18 12:09:11 浏览:643
司法所法律援助与扶贫 发布:2025-01-18 11:55:00 浏览:887
黑子林律师 发布:2025-01-18 11:23:10 浏览:354
三大诉讼法的证明对象 发布:2025-01-18 11:10:53 浏览:208